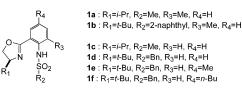


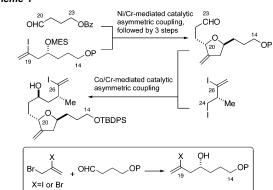
Published on Web 09/10/2004

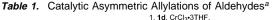
Fe/Cr- and Co/Cr-Mediated Catalytic Asymmetric 2-Haloallylations of Aldehydes


Michio Kurosu, Mei-Huey Lin, and Yoshito Kishi*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138

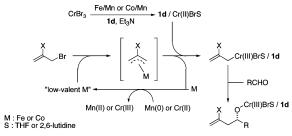
Received July 23, 2004; E-mail: kishi@chemistry.harvard.edu


In connection with our efforts to develop a practical synthesis of the marine natural product halicondrin B and its analogues, we reported a synthesis of the C14–C26 segment by using Ni/Cr- and Co/Cr-mediated catalytic asymmetric coupling reactions (Scheme 1).¹ We have realized the possibility that the C14–C19 building block could be obtained through a catalytic asymmetric 2-haloal-lylation (see the reaction highlighted by a box in Scheme 1). Otera reported that 2-bromoallylation of aldehydes with 2,3-dibromopropene is effectively achieved by using Sn/HBr.² However, no method is known to synthesize 3-halohomoallylic alcohols in a catalytic asymmetric manner.³ In this communication, we report Fe/Cr- and Co/Cr-mediated catalytic asymmetric 2-haloallylations of aldehydes.


We reported that sulfonamides such as 1a,b are effective in Ni/ Cr- and Co/Cr-mediated catalytic asymmetric vinylation and alkylation reactions in a catalytic asymmetric manner.¹ To achieve Cr-mediated asymmetric haloallylation reactions, we first screened the sulfonamide ligands for the coupling of heptanal (3a) with allyl bromide (2a) under the reaction conditions using (1) a Cr-ligand complex (10 mol %) generated from a sulfonamide and CrCl₃·3THF in the presence of Et₃N and Mn and (2) TMSCl as a chromiumalkoxide dissociating reagent.⁴ Through this screening, it became evident that a sulfonamide with $R_3 = H$ is far superior to the corresponding sulfonamide with $R_3 = Me$ (cf, 1c vs 1a). We then optimized the ligand 1c, from which three excellent sulfonamides 1d-f emerged.⁵ However, as 1d can be synthesized in two steps from commercially available inexpensive 2-aminobenzonitrile, we used 1d for further studies. Interestingly, an addition of 2,6-lutidine was found to improve asymmetric inductions significantly.⁶ Under the optimized conditions, the allylation of 3a with 2a gave the corresponding homoallylic alcohol 4a in 93% yield with 93% enantiomeric excess (ee) in the presence of 10 mol % of the catalyst (Entry 1 in Table 1). It is worthwhile noting that a satisfactory result was obtained even with 4 mol % of the catalyst (85% yield, 93% ee).7

The optimized conditions were then applied to γ , γ -dimethylallyl bromide (**2b**) and methallyl bromide (**X** = Br in **2c**). The rate of catalytic allylation with γ -substituted allyl bromides was not noticeably different from that observed for allyl bromide.⁸ On the contrary, the rate with β -substituted allyl bromides was significantly decreased compared to that of allyl bromide. For example, the catalytic allylation with methallyl bromide under the conditions developed for **2a** proceeded but sluggishly (ca. 30% conversion after 48 h). However, the coupling reaction was completed within 12 h using methallyl iodide (**2c**) (entry 4).

Ro				Et ₃ N, M		R ₃ OH	
113	$R_2 + OHC_{R_1} \xrightarrow{2. \text{ arg. AcOH}} R_2 R_2 R_2$						
×	-	+ 0	NHC. 2	. aq. AcC)H		² 1
2a : X=Br, R ₂ 2b : X=Br, R ₂	2=R3=H	01	R ₁ =(CH ₂) ₅ Me R ₁ =(CH ₂) ₃ O-TE	DPS	4a : R ₁ =(CH ₂ 4b : R ₁ =(CH ₂		
2c : X=I, R2=	H Ro=Me	2			4c : R1=(CH2	OTROPS F	
20.701,102	11, 113 100	,					
					4d : R ₁ =(CH ₂)30-18DPS, F	R ₂ =H, R ₃ =Me
_	Entry	2a~c +	3a,b>	4a∼d	ee (%) ^b	yield (%)	
	1	2a	3a	4a	93	93	
	2	2a	3b	4b	92	90	
	3	2b	3b	4c	94	94	
	4	2c	3b	4d	93	91 ^c	


^{*a*} All reactions were done with 10 mol% of the catalyst at 0 °C. ^{*b*} *Ee* of the products was established by ¹H-NMR analysis of its Mosher ester. ^{*c*} The reaction completed within 12 h.

We then investigated catalytic asymmetric 2-haloallylation. Disappointingly, under the optimized conditions given in Table 1, 2,3-dibromopropene (5a) did not give the desired products. The reactivity of 5a against the reducing metals was electronically and sterically attenuated by the bromine at the β -position. To enhance the reactivity of the ligand 1d-Cr complex, we attempted to replace CrCl₃ with CrBr_{3.9} However, due to its extremely poor solubility in THF, CrBr₃ remained unchanged in the presence of 1d, Mn, and Et₃N even at 70 °C. Interestingly, in the presence of iron tris-(2,2,6,6-tetramethyl-3,5-heptanedione) (Fe(TMHD)₃),¹⁰ CrBr₃ was reduced to a low-valent Cr species and formed a complex with the ligand 1d.¹¹ Gratifyingly, 2-bromoallylation of 6a with 5a in the presence of 10 mol % of the complex (generated from 1d, Fe-(TMHD)₃, CrBr₃, Mn, and Et₃N (all in THF) and TMSCl and 2,6lutidine) afforded, after selective TMS-desilylation, the desired product 7a in 75% yield with 93% ee (entry 1 in Table 2). Even with 5 mol % of the catalyst, the 2-bromoallylation smoothly proceeded to give the desired product in 70% with 92% ee. The same reaction of a functionalized aldehyde 6b gave an equally satisfactory result (entry 2). In demonstrating the applicability of

	Y +	OHC.R	1. 1d, CrBr ₃ , Et ₃ N, Fe(TMHD) ₃ or CoPc, Mn, 2,6-lutidine, TMSCI X 2. aq. AcOH or TBAF			
	5a~c	6a~l			7a∼l	
Entry	∕ 5a~c .	⊦ 6a~l		→ 7a~l	yield	ee ^e
1 ^{b,f}	5a : X=Y=Br	6a: R=(CH ₂) ₅ M	e	7a: X=Br, R=(CH ₂) ₅ Me	75%	93%
2 ^b	5a: X=Y=Br	6b: R=(CH ₂) ₃ O	-TBDPS ⁱ	7b: X=Br, R=(CH ₂) ₃ O-TBDP	S 75	92
3 ^b	5a: X=Y=Br	6c: R=(CH ₂) ₃ O	-TBS	7c: X=Br, R=(CH ₂) ₃ O-TBS	60	91
4 ^b	5a: X=Y=Br	6d: R=(CH ₂) ₂ C	H(SEt) ₂	7d: X=Br, R=(CH ₂) ₂ CH(SEt)	2 70	90
5 ^b	5a: X=Y=Br	6e: R=cyclohex	cyl	7e: X=Br, R=cyclohexyl	70	90
6 ^b	5a: X=Y=Br	6f: R=CH=CH(7f: X=Br, R=CH=CH(CH ₂) ₂ N	le 75	87
7 ^b	5a: X=Y=Br	6g: R=CH=CH	Ph	7g:X=Br, R=CH=CHPh	75	83
8 ^b	5a: X=Y=Br	6h: R=Ph		7h: X=Br, R=Ph	86	84
9 ^{b,f}	5b: X=I, Y=Br	6b: R=(CH ₂) ₃ O		7i: X=I, R=(CH ₂) ₃ O-TBDPS	50	93
10 ^c	5b: X=I, Y=Br	6b: R=(CH ₂) ₃ O		7j: X=I, R=(CH ₂) ₃ O-TBDPS	63	93
11 ^b	5c: X=Cl, Y=Br			7k: X=CI, R=(CH ₂) ₃ O-TBDP	S 45 ^h	90
12 ^d	5c: X=CI, Y=Br	6b: R=(CH ₂) ₃ O	-TBDPS	7I: X=CI, R=(CH ₂) ₃ O-TBDPS	90	90

^{*a*} All reactions were done with 10 mol% of the catalyst at 0 °C. ^{*b*} Fe(TMHD)₃ was used. ^{*c*} Co(Pc) was used. ^{*d*} This reaction was done under the conditions specified in Table 1. ^{*e*} ee of the product was established by chiral HPLC analysis or by ¹H NMR analysis of its Mosher ester. ^{*f*} For determination of absolute chemistry, see Supporting Information. ^{*g*} Trans isomer. ^{*h*} The aldehyde was not completely consumed. ^{*i*} **6a** = **3a** (in Table 1), **6b** = **3b**.

Scheme 2. Proposed Mechanism for the Fe/Cr- or Co/ Cr-Mediated Reactions

these reaction conditions for other functionalized aldehydes, we noticed that 2,6-lutidine not only improves the enatioselectivity (vide ante) but also acts as an acid scavenger. In the absence of 2,6-lutidine, 2-bromoallylation of the TBS-protected aldehyde **6c** gave the product accompanied with a significant amount of the diol, whereas in the presence of 2,6-lutidine the 2-bromoallylation reaction gave the expected product **7c** without contamination of the TBS-deprotected byproduct (entry 3). The applicability of these reactions was tested for several additional types of aldehydes. As summarized in Table 2, saturated and α -branched aldehydes gave 90% or better ee's (entries 1–5). However, α , β -unsaturated and aromatic aldehydes gave slightly lower ee (83–87%) (entries 6–8).

We then applied the conditions developed for 2-bromoallylation to 2-iodoallylation and were pleased to observe that 2-iodo-3bromopropene (**5b**) gave the expected product with good enantioselectivity (entry 9). However, its chemical yield was only modest.¹² We wished to improve its overall efficiency. In this regard, we noticed that an active chromium—bromide complex can be formed via cobalt phthalocyanine (CoPc) and that the Co/Cr-mediated system enhanced the reaction rate.¹³ Gratifyingly, the Co/Crmediated reaction was very effective in the 2-iodoallylation of **6b** with **5b** (entry 10). On the contrary, 2-chloroallylation is best achieved with 2-chloro-3-bromopropene (**5c**) under the CrCl₃·3THF conditions given in Table 1 (entry 12).

Mechanistically, the Fe/Cr- and Co/Cr-mediated 2-halo-allylations might involve sequences of steps depicted in Scheme 2. Both low-valent Co and Fe species are known to facilitate radical formation from alkyl halides.^{13,14} The bromine or iodine at the β -position appears to play an important role in forming and/or stabilizing the allyl radical generated in the Fe/Cr/Mn- or Co/Cr/ Mn-multimetallic system.¹⁵ On the other hand, the **1d**/Cr(II) complex is formed from Fe(III) or Co(II)/CrBr₃/1d/Mn/Et₃N (vide ante). A transmetalation between the 1d/Cr(II) complex and the metalloallyl species should result in the 1d/allyl-Cr(III) complex which is identical (except for a difference in the allyl vs vinyl) to the complex suggested for the catalytic Ni/Cr-mediated couplings.¹ This complex would then undergo the addition to aldehydes through a six-centered transition state.¹⁶

In conclusion, we have developed a novel Fe/Cr- and Co/Crmediated 2-haloallylation that allows, for the first time, aldehydes and 2-haloallyl halides to couple in a catalytic asymmetric manner. The coupling reactions are operationally simple and scalable and furnish products with a synthetically useful level of enantiomeric excess. This method will provide direct and economical access to valuable synthetic intermediates.

Acknowledgment. We thank the National Institutes of Health (CA 22215) and Eisai Research Institute for generous financial support.

Supporting Information Available: Experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Wan, Z.-K.; Choi, H.-W.; Kang, F.-A.; Nakajima, K.; Demeke, D.; Kishi, Y. Org. Lett. 2002, 4, 4431. (b) Choi, H.-W.; Nakajima, K.; Demeke, D.; Kang, F.-A.; Jun, H.-S.; Wan, Z.-K.; Kishi, Y. Org. Lett. 2002, 4, 4435 and references therein.
- (2) Mandai, T.; Nokami, J.; Yano, T.; Yoshinaga, Y.; Otera, J. J. Org. Chem. 1984, 49, 172.
- (3) For a stoichiometric enantioselective synthesis of bromohomoallylic alcohols with the chiral borane and 2-bromoallyltributyltin reagents, see: Corey, E. J.; Yu, C.-M.; Kim, S. S. J. Am. Chem. Soc. 1989, 111, 5495.
- (4) (a) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 2533. (b) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349.
- (5) The ligands 1e and 1f gave a slightly better asymmetric induction than 1d, but the difference was insignificant.
- (6) Other amines including pyridine, 2,6-di-*tert*-butylpyridine, quinoline, and acridine were found to be ineffective in improving ee. The exact role of 2,6-lutidine is not clear at this time.
- (7) For Cr-mediated catalytic asymmetric allylations, see: (a) Bandini, M.; Cozzi, P. G.; Melchiorre, P.; Morganti, S.; Umani-Ronchi, A. Org. Lett. 2001, 3, 1153. (b) Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2000, 39, 2327. (c) Inoue, M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc. 2003, 125, 1140.
- (8) Catalytic allylation completed within 12 h with crotyl bromide, prenyl bromide (entry 3 in Table 1), and 1,3-dibromopropene.
- (9) We expected that CrBr₃ would exhibit higher reduction potential than CrCl₃. For a similar concept for Ti species, see: Mukaiyama, T.; Kagayama, A.; Igarashi, K. *Chem. Lett.* **2000**, 336. In addition, we expected that CrBr₃ and CrCl₃ might behave differently due to the difference in their Lewis acidity.
- (10) Fe(DBM)₃ was also found to be equally effective.
- (11) The progress of the complex formation could be monitored by a change of solution color that turned into dark green.
- (12) The iodoallylation reactions between **6b** and **5b** (2.5 equiv) under the conditions of Otera² gave the expected product but in poor yield ($\sim 10\%$).
- (13) Co/Cr-Mediated 2-bromoallylation of 6b was significantly faster than the corresponding Fe/Cr-mediated 2-bromoallylation with a lower ee (89%).
- (14) (a) Tamura, M.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487. (b) Kochi,
 J. K. Pure Appl. Chem. 1980, 52, 571 and references therein, (c) Takai,
 K.; Nitta, K.; Fujimura, O.; Utimoto, K. J. Org. Chem. 1989, 54, 4732.
- (15) The Fe/Cr mediated iodoallylation of **6b** with **5d** affored a 1:2.6 mixture of **7j** and **7k**, thereby indicating that a metallotropic rearragement takes place. However, the observed product ratio may suggest that this metallo allyl species is not completely symmetrized before the C-C bond-formation. Because Cr-mediated allylation reactions are known to go through a six-membered cyclic transition state,¹⁶ this observation may suggest that Fe facilitates the oxidative addition of **5d**.

$$D \underbrace{\downarrow}_{\mathbf{5d}} Br + \mathbf{6b} \xrightarrow{\begin{array}{c} 1. \ \mathbf{1d}, \ CrBr_3, \ Et_3N, \ Fe(TMHD)_3, \ \mathbf{0}H \\ \mathbf{2. aq. \ AcOH} \end{array}} D \underbrace{\downarrow}_{\mathbf{7j}} D \underbrace{\downarrow}_{\mathbf{R}} + \underbrace{\downarrow}_{\mathbf{0}H} D \underbrace{\downarrow}_{\mathbf{R}} + \underbrace{\downarrow}_{\mathbf{0}H} D \underbrace{\downarrow}_{\mathbf{R}} P \underbrace{\downarrow}_{\mathbf{R}} P$$

 (16) (a) Buse, C. T.; Heathcock, C. H. *Tetrahedron Lett.* **1978**, *19*, 1685. (b) Hiyama, T.; Kimura, K.; Nozaki, H. *Tetrahedron Lett.* **1981**, *22*, 1037. JA045557J